DPS
Drejtoria e Përgjithshme e Standardizimit
Tel/Cel: +355 4 222 62 55
E-mail: info@dps.gov.al
Adresa: Rr.: "Reshit Collaku", (pranë ILDKPKI, kati VI), Kutia Postare 98, Tiranë - Shqipëri
Main menu

ISO 18077:2018

Reload startup physics tests for pressurized water reactors
27 mar 2018
95.99 Withdrawal of Standard   7 dhj 2022

General information

95.99     7 dhj 2022

ISO

ISO/TC 85/SC 6

International Standard

27.120.10  

anglisht  

Buying

Shfuqizuar

Language in which you want to receive the document.

Scope

ISO 18077:2018 applies to the reactor physics tests that are performed following a refuelling or other core alteration of a PWR for which nuclear design calculations are required. This document does not address the physics test program for the initial core of a commercial PWR[1].
ISO 18077:2018 specifies the minimum acceptable startup reactor physics test program to determine if the operating characteristics of the core are consistent with the design predictions, which provides assurance that the core can be operated as designed. This document does not address surveillance of reactor physics parameters during operation or other required tests such as mechanical tests of system components (for example the rod drop time test), visual verification requirements for fuel assembly loading, or the calibration of instrumentation or control systems (even though these tests are an integral part of an overall program to ensure that the core behaves as designed).
ISO 18077:2018 assumes that the same previously accepted analytical methods are used for both the design of the reactor core and the startup test predictions. It also assumes that the expected operation of the core will fall within the historical database established for the plant and/or sister plants.
When major changes are made in the core design, the test program should be reviewed to determine if more extensive testing is needed. Typical changes that might fall in this category include the initial use of novel fuel cycle designs, significant changes in fuel enrichments, fuel assembly design changes, burnable absorber design changes, and cores resulting from unplanned short cycles. Changes such as these may lead to operation in regions outside of the plant's experience database and therefore may necessitate expanding the test program.

[1] The good practices discussed in this document should be considered for use in the physics test program for the initial core of a commercial PWR. One test that provides useful information (without additional test time) is the hot-zero-power to hot-full-power reactivity measurement.

Life cycle

NOW

WITHDRAWN
ISO 18077:2018
95.99 Withdrawal of Standard
7 dhj 2022

REVISED BY

PUBLISHED
ISO 18077:2022